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We mainly follow section 4 of [I].

1 Superspace

We work in four dimension. N = 1 superspace _is an extension of Minkowski space with four
additional Grasmann coordinates (z#) — (a*,60,,05). Similarly to how Minkowski space can be
viewed as a coset of the full Poincaré group modulu the Lorentz subgroup
_150(1,3)

R = 50(1,3) (1)

with the identification of coordinates with group elements
R (2)

superspace can be viewed as a coset of the superPoincaré group modulu the Lorentz subgroup

Osp(4]1
M = G, Q

where the Lie Algebra of Osp(4|N), for general N, is a grade one graded Lie algebra osp(4|\) =
Lo @ L; whose matrix representation can be written as

Agxa 0 0 Baxn
4
( 0 DNXN)+<CNX4 0 ’ @

with the first matrix corresponding to Ly and the second to Ly and A € sp(4), D € o(N). Thus, the
first factor in the graded Lie algebra can be expressed as

Lo = sp(4) @ o(N), (5)

which inspires the name of the whole subalgebra. The bar signifies the Inonu-Wigner contraction
that we do not explain here. More physically, the role of the matrices A, B,C, D is played by the
standard superPoincaré generators as

A—P,,M,,, D—=Z"Y B,C—-QQ;. (6)

Going back the the special case N' = 1, the identification of the superspace coordinates with the
group elements is

(2",04,05) ¢ € Fuel Qat0aQ” (7)



Since 6 and @ are Grasmann, the Taylor expansion of the most general superfield (a function of
the superspace coordinates) is most forth order in the 6’s (2 6’s and 2 6’s). If we know the superfiled
at one point in superspace, we can generate the superfield at nearby points by

Y(z + 62,0 + 56,0 + 00) = e (RQtQy (.9, 9)e!(QTQ) | (8)

where we have adopted the convention to drop spinor indices and just assume Q) = €¢*Q,, and Ed@a.
Using the Becker-Campbell-Hausdorff formula one can show that the variations of the coordinates
are given in terms of the spinor parameters ¢ and € as

oz = ifote — iecth
00% = e~ | 9)
004 =€, .

2 Chiral Superfield

We define the covariant derivatives

Dy = 0o +i0" 070,

_ _ (10)
D =04 +i60°0%,0, .

Using them we can define and chiral and an anti-chiral superfield as
Dy® =0, DU =0. (11)

Clearly, if ® is chiral; ® is anti-chiral. Explicitly working out the chirality constraints one can
show that the most general form a chiral superfield is

_ ; _ 1
® = ¢ + V200 + i00"00, ¢ — 0OF — %99(%1/)0“9 ~ J00999,0" 6. (12)

The fields (¢, ¥4; F') are functions of the standard Minkowski coordinates only and constitute pre-
cisely an A/ = 1 chiral multiplet (F' is an auxilary field that can be integrated out). In terms of new
coordinates

yt =t +iot0, T =zt —ifa"f, (13)
the chiral superfield takes the simpler form

D =¢+20¢ — 0OF . (14)

3 Vector Superfield

A real, aka vector, superfield is one that obeys the condition

V=V. (15)



Explicitly working out this constraint on a generic superfield expanded up to four €’s we see that
the most general vector superfield is given by

V = C + iy — i0X + 00" Buv, + %GGM - %@M*
(g (= i 1 1
+ 060 (/\ + ;U”Z)ﬂx) — 006 <)\ + ;aﬂaﬂx> + 50000 (D = 2@6#0) . (16)
One can immediately notice that ® + @ is a vector superfield and, further, that the transformation

VoV+e+d (17)

is essentially a generalization of the gauge transformation for ordinary vector fields since on the
vector component of V' it acts as

vy = vy, — 20,Ime . (18)

Most of the degrees of freedom in can be gauged away. A convenient gauge is the Wess-Zumino
gauge under which the vector superfield takes the simple form

_ . 1
Vavz = 00" 0v,, + 000X — i000X + 5999€D . (19)

The fields (Aa,v,; D) constitute precisely the N' = 1 vector multiplet. Notice that A is not an
independent field since it can be obtained from A and that D is again an auxilary filed. In the y, 7y
coordinates introduced in the vector superfield in the Wess-Zumino gauge takes the form

_ . 1
Vivz = 00+Gv,, -+ 099X — i000 + S0090(D — id,0"). (20)

As evident from so far we have only been considering U(1) as a gauge group. To generalize
to a general gauge group G, first promote the superfields (and the ordinary fields, of course) to Lie
algebra elements

v=v,Tr, &=o,7% a=1,...,dimG. (21)
Then, note that the finite version of the gauge transformation can be seen to be
eV e PeVe?, (22)
Defining the covariant derivative
Duzau_%[vua']v (23)

replacing all ordinary derivatives in with it and expanding the finite gauge transformation
to second order, we see that now the ordinary vector field transform as a non-abelian vector field
should

vy = vy — 20,Imé + ifv,, Img) . (24)



4 Gaugino Superfield

In this section we directly work with non-abelian gauge group G. The vector superfield contains
explicitly v#. This is not the most convenient for building actions. Preferably, there should be some
superfield generalization of the filed strength F},,. Consider the following chiral superfields
Il v (A 7 72 1 V.~V
W, = _ZDDG D.e’, Ws= —ZDDe Dge V. (25)
They are called gaugino fields, for reasons to become clear momentarily. Under the gauge transfor-
mation one can explicitly check that they transform as

Wo — e ®Woe?, Wy — e—5Wde? (26)

Expanding the definitions to second order in the exponent and working in the y-coordinates
(13) one can write the gaugino field explicitly

Wo = —idg + 0D +i(c"0) o F + 00(c" D, N (27)
where the field strength
I i

= 0uvy, — Oyu, — Q[quvu] (28)

has appeared as desired. We see that the multiplet that composes the gaugino filed (As,v,; F') has
lowest spin component the gaugino, hence the name. The gaugino filed is also called supersymmetric
field strength because it is the carrier of F),, .
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