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We mainly follow section 4 of [1].

1 Superspace
We work in four dimension. N = 1 superspace is an extension of Minkowski space with four
additional Grasmann coordinates (xµ) → (xµ, θα, θα̇). Similarly to how Minkowski space can be
viewed as a coset of the full Poincaré group modulu the Lorentz subgroup

R1,3 =
ISO(1, 3)

SO(1, 3)
, (1)

with the identification of coordinates with group elements

xµ ↔ ex
µPµ , (2)

superspace can be viewed as a coset of the superPoincaré group modulu the Lorentz subgroup

M4|1 =
Osp(4|1)

SO(1, 3)
, (3)

where the Lie Algebra of Osp(4|N ), for general N , is a grade one graded Lie algebra osp(4|N ) =
L0 ⊕ L1 whose matrix representation can be written as(

A4×4 0
0 DN×N

)
+

(
0 B4×N

CN×4 0

)
, (4)

with the first matrix corresponding to L0 and the second to L1 and A ∈ sp(4), D ∈ o(N ). Thus, the
first factor in the graded Lie algebra can be expressed as

L0 = sp(4)⊗ o(N ) , (5)

which inspires the name of the whole subalgebra. The bar signifies the Inonu-Wigner contraction
that we do not explain here. More physically, the role of the matrices A,B,C,D is played by the
standard superPoincaré generators as

A→ Pµ ,Mµν , D → ZIJ , B , C → QI , QI . (6)

Going back the the special case N = 1, the identification of the superspace coordinates with the
group elements is

(xµ, θα, θα̇)↔ ex
µPµeθ

αQα+θα̇Q
α̇

. (7)
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Since θ and θ are Grasmann, the Taylor expansion of the most general superfield (a function of
the superspace coordinates) is most forth order in the θ’s (2 θ’s and 2 θ’s). If we know the superfiled
at one point in superspace, we can generate the superfield at nearby points by

Y (x+ δx, θ + δθ, θ + δθ) = e−i(εQ+εQ)Y (x, θ, θ)ei(εQ+εQ) , (8)

where we have adopted the convention to drop spinor indices and just assume εQ = εαQα and εα̇Q
α̇
.

Using the Becker-Campbell-Hausdorff formula one can show that the variations of the coordinates
are given in terms of the spinor parameters ε and ε as

δxµ = iθσµε− iεσµθ ,
δθα = εα ,

δθα̇ = εα̇ .

(9)

2 Chiral Superfield
We define the covariant derivatives

Dα = ∂α + iσµ
αβ̇
θ
β̇
∂µ ,

Dα̇ = ∂α̇ + iθβσµβα̇∂µ .
(10)

Using them we can define and chiral and an anti-chiral superfield as

Dα̇Φ = 0 , DαΨ = 0 . (11)

Clearly, if Φ is chiral; Φ is anti-chiral. Explicitly working out the chirality constraints (11) one can
show that the most general form a chiral superfield is

Φ = φ+
√

2θψ + iθσµθ∂µφ− θθF −
i√
2
θθ∂µψσ

µθ − 1

4
θθθθ∂µ∂

µφ . (12)

The fields (φ, ψα;F ) are functions of the standard Minkowski coordinates only and constitute pre-
cisely an N = 1 chiral multiplet (F is an auxilary field that can be integrated out). In terms of new
coordinates

yµ = xµ + iθσµθ , yµ = xµ − iθσµθ , (13)

the chiral superfield takes the simpler form

Φ = φ+
√

2θψ − θθF . (14)

3 Vector Superfield
A real, aka vector, superfield is one that obeys the condition

V = V . (15)
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Explicitly working out this constraint on a generic superfield expanded up to four θ’s we see that
the most general vector superfield is given by

V = C + iθχ− iθχ+ θσµθvµ +
i

2
θθM − i

2
θθM∗

+ iθθθ

(
λ+

i

2
σµ∂µχ

)
− iθθθ

(
λ+

i

2
σµ∂µχ

)
+

1

2
θθθθ

(
D − 1

2
∂µ∂

µC

)
. (16)

One can immediately notice that Φ + Φ is a vector superfield and, further, that the transformation

V → V + Φ + Φ (17)

is essentially a generalization of the gauge transformation for ordinary vector fields since on the
vector component of V it acts as

vµ → vµ − 2∂µImφ . (18)

Most of the degrees of freedom in (16) can be gauged away. A convenient gauge is the Wess-Zumino
gauge under which the vector superfield takes the simple form

VWZ = θσµθvµ + iθθθλ− iθθθλ+
1

2
θθθθD . (19)

The fields (λα, vµ;D) constitute precisely the N = 1 vector multiplet. Notice that λ is not an
independent field since it can be obtained from λ and that D is again an auxilary filed. In the y, y
coordinates introduced in (13) the vector superfield in the Wess-Zumino gauge takes the form

VWZ = θσµθvµ + iθθθλ− iθθθλ+
1

2
θθθθ(D − i∂µvµ) . (20)

As evident from (17) so far we have only been considering U(1) as a gauge group. To generalize
to a general gauge group G, first promote the superfields (and the ordinary fields, of course) to Lie
algebra elements

V = VaT
a , Φ = ΦaT

a , a = 1, . . . ,dimG . (21)

Then, note that the finite version of the gauge transformation (17) can be seen to be

eV → e−ΦeV eΦ . (22)

Defining the covariant derivative

Dµ = ∂µ −
i

2
[vµ, ·] , (23)

replacing all ordinary derivatives in (16) with it and expanding the finite gauge transformation (22)
to second order, we see that now the ordinary vector field transform as a non-abelian vector field
should

vµ → vµ − 2∂µImφ+ i[vµ, Imφ] . (24)
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4 Gaugino Superfield
In this section we directly work with non-abelian gauge group G. The vector superfield contains
explicitly vµ. This is not the most convenient for building actions. Preferably, there should be some
superfield generalization of the filed strength Fµν . Consider the following chiral superfields

Wα = −1

4
DDe−VDαe

V , W α̇ = −1

4
DDeVDα̇e

−V . (25)

They are called gaugino fields, for reasons to become clear momentarily. Under the gauge transfor-
mation (22) one can explicitly check that they transform as

Wα → e−ΦWαe
Φ , W α̇ → e−ΦW α̇e

Φ . (26)

Expanding the definitions (25) to second order in the exponent and working in the y-coordinates
(13) one can write the gaugino field explicitly

Wα = −iλα + θαD + i(σµνθ)αFµν + θθ(σµDµλ)α , (27)

where the field strength

Fµν = ∂µvν − ∂νvµ −
i

2
[vµ, vν ] (28)

has appeared as desired. We see that the multiplet that composes the gaugino filed (λα, vµ;F ) has
lowest spin component the gaugino, hence the name. The gaugino filed is also called supersymmetric
field strength because it is the carrier of Fµν .
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