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We closely follow sections 4 and 5 of [1]. In fact this note is nothing but a rewriting and reshuffling
of aforementioned sections is a way that a coherent story emerges for the case of one hyper. All
diagrams are heavily inspired, although not directly copied, from [1].

1 UV Lagrangian and Symmetry Breaking
Consider an N = 2 with gauge group SU(2), with a vector multiplet, parametrized by an N = 1
vector superfield V and an N = 1 chiral superfield Φ, in the adjoint and one hypermultiplet,
paramatrized by twoN = 1 chiral multipletsQa and Q̃a, in the doublet and anti-doublet respectively,
where a = 1, 2 is the SU(2) index. This means that we have only one flavour, Nf = 1. The
Lagrangian is given by

L =

(
Im τ

4π

∫
d4θ trΦ†e[V,·]Φ +

∫
d2θ
−i
8π
τ trWαW

α + cc.

)
+

∫
d4θ

(
Q†eVQ+ Q̃e−V Q̃†

)
+

(∫
d2θ Q̃ΦQ+ cc.

)
+

(∫
d2θ Q̃µQ+ cc.

)
, (1)

where the gaugino superfield Wα is essentially the field strength of V , µ is the bare mass parameter
of Q and we have suppressed SU(2) indices in the second line. Classically

〈Φ〉 = diag(a,−a) , Q = Q̃ = 0 (2)

gives a supersymmetric vaccum in the Coloumb branch. With a 6= 0 the gauge group is broken as

SU(2)→ U(1) (3)

and the scalars of the hypermultiplet acquire mass

MQ = |±a+ µ| . (4)

For a general state the BPS mass formula reads

M ≥ |na+maD + fµ| , (5)

where (n,m) are the magnetic and electric charges, f is the charge under the U(1) flavour symmetry
(Q has f = 1 and Q̃ has f = −1), and aD is the diagonal element of the dual vev.
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2 Running of the Coupling Constant
We would need the running of the coupling constant for the case of 1 flavour and for pure SYM, as
we shall immediately see. We begin with the case Nf = 1. The one-loop running is

τ(a) = 2τUV −
6

2πi
log

a

ΛUV
+ · · · = − 6

2πi
log

a

Λ1
+ . . . , Λ6

1 = Λ6
UV e

4πiτUV . (6)

This running has been calculated in the holomorphic scheme and is one-exact to all orders in per-
turbation theory. The . . . stand for non-perturbative corrections in the form of instantons as we
will soon see. Finally, we have defined Λ1 via the UV scale ΛUV and coupling τUV , but in fact it
is is an invariant quantity to all orders in perturbation theory and can be readily evaluated at any
other scale

Λ6
1 = a6e2πiτ(a) . (7)

It is called complexified dynamical scale and can be considered as a vev of some background chiral
field. The index 1 is to remind us that we are dealing with one flavour. The humber 6 in the above
equations appears from the combination

6 = 2(2C(adj)− 2NfC(fund)) = 2

(
2N − 2Nf

1

2

)
, with N = 2 , Nf = 1 , (8)

where the quantity C(ρ) is defined via

tr ρ(T a)ρ(T b) = C(ρ)δab , (9)

where we normalize the generators as trT aT b = 1
2δ
ab. Then C(adj) equals the dual Coxeter number.

For the case with no flavours the story is analogous, but the coefficient is not 6, but 8 due to the
fact that Nf = 0. We obtain for the running

τ(a) = 2τUV −
8

2πi
log

a

ΛUV
+ · · · = − 8

2πi
log

a

Λ0
+ . . . , Λ4

0 = Λ4
UV e

2πiτUV . (10)

Now we focus on the running in its entirety. When |µ| is very large we expect a running of the
coupling constant as in Figure 1. At first we have the full SU(2) theory with one flavour. At scale
∼ |µ| the chiral fields Q, Q̃ decouple and we get pure SU(2) theory. When the vev scale |a| is reached
the gauge group gets broken to U(1). From the running we can determine a rough relation between
the complexified dynamical scales of the theories with and without flavour. This is done by equating
the runnings

τ0(E) = − 6

2πi
log

E

Λ1
, τ1(E) = − 8

2πi
log

E

Λ0
, (11)

where the indices 0 and 1 indicate the number of flavour, at the point E = µ. We obtain

Λ4
0 = µΛ3

1 . (12)

3 The Dual Variable aD and the Monodramy at Infinity
The dual variable aD is given by the first derivative of the prepotential and τ is given by second
derivative of the prepotential from where, as long as we keep |a| � |Λ1|, we can calculate

aD =
∂F

∂a
, τ =

∂2F

∂a2
=⇒ aD = − 6a

2πi
log

a

Λ
+ . . . . (13)
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Figure 1: Running of the coupling constant

A gauge invariant way to label the supersymmetric vacua is to use the variable

u =
1

2

〈
trΦ2

〉
= a2 + . . . . (14)

Adiabatically rotating around the entire complex plane

|u| → e2πi|u| , (15)

we see that a and aD transform as(
a aD

)
→
(
a aD

)(−1 3
0 −1

)
. (16)

From this we determine the monodramy at infinity

M∞ =

(
−1 3
0 −1

)
. (17)

4 Singularities in the u-plane

4.1 Large and Intermediate µ
When µ is large and we consider scales smaller than µ we reduce to the case of pure SU(2) SYM
theory. This theory has two singularities in the u-plane

pure SU(2) singularities: u ∼ ±Λ2
0 . (18)

This can be seen by considering the residual R-symmetry in the IR. The original R-symmetry in the
IR is U(1)R and the fields in the vector multiplet have the R-charge assignments

Aµ | 0

λ λ̃ | 1
Φ | 2

. (19)
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However, quantum mechanically, the rotation

λ→ eiϕλ (20)

is anomalous. Still, it can be compensated by a shift in the θ-angle

θUV → θUV + 2(2C(adj))ϕ = θUV + 8ϕ , (21)

where the numerical factor comes from the fact that λ and λ̃ are in the adjoint. Thus ϕ = π/4 is a
genuine symmetry which acts in the UV as

θUV → θUV + 2π , Φ→ eiπ/2Φ . (22)

It is preserved in the IR and acts as

θIR → θIR + 4π , u = a2 →
(
eiπ/2a

)2

= −u . (23)

Thus, singularities in the u plane come in pairs, and in fact one can show that there should be only
two. Finally, in this regime the only scale is Λ0, so the two singularities should be proportional to
it as in (18).

If µ is intermediate, we expect a singularity at ±a ∼ µ, since then the quanta of Q becomes
massless, as can be seen from (4)

Q singularity for intermediate µ : u ∼ µ2 . (24)

Thus, in the large µ regime we have a total of three singularities, depicted in Figure

Figure 2: Singularities at large µ
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4.2 Small µ
When µ = 0 we can make use of the discrete leftover R-symmetry. The standard R-charge assign-
ments of the full U(1)R IR R-symmetry, when we include one hyper are

Aµ | 0

λ λ̃ | 1
Φ | 2

,

ψQ | − 1

Q Q̃† | 0

ψ†
Q̃

| 1
. (25)

However the rotations

λ→ eiϕλ , ψQ,Q̃ → e−iϕψQ,Q̃ (26)

are anomalous and must be compensated by a shift in the theta angle

θUV → θUV + 2(2C(adj)− 2C(fund))ϕ = θUV + 6ϕ . (27)

Thus ϕ = π/3 is a genuine symmetry which acts in the UV as

θUV → θUV + 2π ,Φ→ e2πi/3Φ . (28)

It is preserved in the IR and acts as

θIR → θIR + 4π , u→ e4πi/3u . (29)

Thus, we conclude that the singularities for small µ should come in triplets

Q singularities for small µ : u ∼ Λ1 , ωΛ1 , ω
2Λ1 , (30)

and in fact one can show that there should be exactly 3 singularities.

Figure 3: Singularities at small µ
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5 Monodramies and the Theory Around the Singularities

5.1 Pure SU(2)
Consider for a moment the pure SU(2) case with no flavours. In this case, we only have the
singularities (18). It is clear that the monodramy at infinity is related to the two monodramies
around these singularities as

M∞ = M+M− . (31)

Further, from (23) we see that M+ and M− should be conjugate, by some SL(2,Z) matrix, that we
call X

M− = XM+X
−1 . (32)

The monodramy problem is solved by

M+ = STS−1 =

(
1 0
−1 1

)
, M− = T 2STS−1T−2 =

(
−1 4
−1 3

)
, (33)

and the matrixX = T 2 corresponds nicely to a shift in θIR by 4π (23). Just by the monodramies, one
can get a pretty good understanding of the physics of the singularities. Take the positive singularity
u = u0 ∼ +Λ0. We perform S-duality

a′ = −aD , a′D = a , (34)

exchanging the electric and magnetic charges. In the dual theory we can expand the vevs in a
neighborhood around u0

a′ = c(u− u0) , a′D =
a′

2πi
log c′(u− u0) , (35)

where we have used (13) and c, c′ are some constants. For the coupling we find

τD(a′) =
∂a′D
∂a′

∼ log a′

2πi
. (36)

Comparing to (10) we find the behavior of of an effective U(1) N = 2 gauge theory coupled to one
chiral multiplet with superpotential term ∫

d2θ Q̃a′Q . (37)

We see that as u→ u0, τD blows up, which corresponds to gD → 0. The mass of the quantum of Q
is given by

MQ = |a′| = |aD| . (38)

Thus, we identify the charged chiral Q as the second quantized version of a monopole from the
original theory. Indeed, heavy, non-perturbative monopoles in the original theory are light in the
strongly coupled point. The behavior at u = −u0 ∼ −Λ0 can be inferred by the discrete R-symmetry
(23). We map the charges of the u = u0 singularity with T 2 and obtain

T 2

(
0
1

)
=

(
2
1

)
. (39)

Thus at his singularity instead of a monopole, a dyon with charges n = 2 and m = 1 becomes light.
For this reason the positive singularity is called a monopole point and the negative: a dyon point.
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5.2 The Case of One Hyper
When we have the hyper present the monodramy equation reads

M∞ = M3M2M1 . (40)

Moreover, in the small µ regime the monodramies are related by conjugation by an SL(2,Z) matrix
X

M2 = X−1M1X , M3 = X−2M1X
2 . (41)

A solution to this monodramy problem is given by

M1 = STS−1 , X = T . (42)

We see that M1 ≡ M+, thus in the large µ regime the local physics around two of the singularities
is exactly the same as in the pure SU(2) case: a monopole and a dyon become light respectively.
At the third point, one component of the doublet hyper (Q, Q̃) becomes light. For all three singu-
larities, the local description is that of a low energy U(1) gauge theory coupled to one charged hyper.

In the small µ regime, the three singularities become related by the discrete R-symmetry (29)
and it is no longer possible to distinguish which singularity come from the monopole, dyon or hyper
points that we perfectly well distinguished in the large µ regime.

6 The Seiberg-Witten Curve
Introduce two auxilary complex variables (x, z) and consider the 1-dimensional complex curve in C2

Σ :
2Λ(x− µ)

z
+ Λ2z = x2 − u . (43)

We compactify the point at infinity in the z-plane and call the resulting sphere C, such that we can
view x(z) as a coordinate on C and introduce the Sieberg-Witten differential

λ = x
dz

z
. (44)

The point z = 0 is a singularity but not a branch point and it has local behavior

x+ ∼
2Λ

z
− µ+O(z) ,

x− ∼ +µ+O(z) .
(45)

Further

Res(λ, z = 0) = ±µ . (46)

There are a total of 4 branch points of the function x(z) that we label z = z3, z2, z+,∞. We take
the branch cuts to run between z3 and z2 and between z+ and ∞. We see that the curve Σ is a
two sheeted cover of C, depicted in Figure 4 Drawing the two cycles A and B as in Figure 4 we can
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Figure 4: The two-sheeted sphere C with the branch points and the zero labelled.

declare that

a =
1

2πi

∫
A

λ , aD =
1

2πi

∫
B

λ . (47)

To check that these declarations satisfy the physical requirements we have consider

τ(a) =
∂aD
∂a

=
∂aD/∂u

∂a/∂u
=

∫
A
∂λ/∂u∫

B
∂λ/∂u

=

∫
A
ω∫

B
ω
, (48)

where the differential

ω ≡ ∂λ

∂u
=

dz

xz
(49)

is finite everywhere on Σ. Now consider a map from Σ to another complex plane, that is constructed
by taking the endpoint P of a path starting at P0 and integrating ω over it

t =

∫ P

P0

ω , (50)

see Figure 5 . The above mapping is holomorphic, thus it preserves angles. As such the image of B
is always to the left of the image of A. Since the complex parameter τ that lives in the t-plane is
given by the ratio B/A, we see that

Im τ(a) > 0 . (51)

Thus, we see that (47) is indeed the physically correct assignment. Further, taking a closed path L
on the torus that encircles A n times, B m times and the poles with residue ±µ f times we obtain

1

2πi

∫
L

λ = na+maD + fµ . (52)
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Figure 5: The path on the torus (the Seiberg-Witten curve), on the left, is mapped to the complex
t-plane, on the right.

Let’s check if we correctly reproduce the running of the coupling in the weakly coupled region.
For simplicity, set µ = 0, and assume |u| � |Λ|. Take the A cycle to have |z| = 1, and for the
dominant contribution to the B-cycle, calculate the integral nearby the branch points z2 ∼ Λ/

√
u

and z+ ∼ u/Λ2

a =
1

2πi

∫
A

λ ∼
√
u ,

aD =
1

2πi

∫
B

λ =
2

2πi

∫ z2

z+

λ ∼ − 6

2πi
a log

a

Λ
.

(53)

So we indeed have the correct behavior at small coupling. What is more, we can now perturbatively
find all corrections from the curve which are of the form

τ(a) = − 6

2πi
log

a

Λ
+

∞∑
k=0

ck

(
Λ

a

)6k

. (54)

The second term above constitutes non-perturbative instanton corrections. Of course, it was known
before the work of Seiberg and Witten that they take this general form, only now all of the coefficients
ck can be calculated explicitly from the curve, deriving the low energy effective theory in its entirety.
Does the curve reproduce correctly the other two singularities? The branch points of the function
x(z) are determined when Σ has double roots, namely

z3 +
uz2

Λ2
− 2µz

Λ
+ 1 = 0 . (55)

Singularity in the u-plane is caused by two of the branch points above colliding, that is when the
discriminant of the above equation vanishes

u3 − µ2u2 + Λ3µu+
27

4
Λ6 − 8Λ3µ3 = 0 . (56)
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When µ = 0 this equation correctly reproduces the three singularities related by the discrete R-
symmetry

u = cΛ2 , e2πi/3cΛ2 , e4πi/3cΛ2 . (57)

When |µ| � Λ we find in for large and small u respectively

u ∼ µ2 , u ∼ ±
√
−8Λ3µ . (58)

We see that indeed the pure SU(2) scale is given by

Λ2
0 =

√
Λ3µ , (59)

as we found earlier.

7 Notable Physical Effects
As µ moves along a semicircle with constant large |µ| the quark point rotates once, while the dyon
and the monopole points rotate by π

2 . If we now make |µ| small, the three singularities come closer
in the small µ regime. Then we make it big to complete the semicircle. Studying the behavior of
(56) carefully one can see that in this process exchanges the quark point and the monopole point

(Q,M,D)→ (M,D,Q) . (60)

Calculate the discriminant of (56)

µ3 +
27

8
Λ3 = 0 . (61)

Take µ = − 3Λ
2 as an explicit choice. The singularities in the u-plane collapse to two

u = −15Λ2

4
, u = 3Λ2 . (62)

In the curve three of the branch points colide as z = −1 and one remains at ∞. Thus a = aD = 0,
since the torus has degenerated. Using the BPS formula we see that simultaneously, magnetic and
electic particles become light at this singularity.
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